Adaptive Sparse Coding for Painting Style Analysis

نویسندگان

  • Zhi Gao
  • Mo Shan
  • Loong Fah Cheong
  • Qingquan Li
چکیده

Inspired by the outstanding performance of sparse coding in applications of image denoising, restoration, classification, etc, we propose an adaptive sparse coding method for painting style analysis that is traditionally carried out by art connoisseurs and experts. Significantly improved over previous sparse coding methods, which heavily rely on the comparison of query paintings, our method is able to determine the authenticity of a single query painting based on estimated decision boundary. Firstly, discriminative patches containing the most representative characteristics of the given authentic samples are extracted via exploiting the statistical information of their representation on the DCT basis. Subsequently, the strategy of adaptive sparsity constraint which assigns higher sparsity weight to the patch with higher discriminative level is enforced to make the dictionary trained on such patches more exclusively adaptive to the authentic samples than via previous sparse coding algorithms. Relying on the learnt dictionary, the query painting can be authenticated if both better denoising performance and higher sparse representation are obtained, otherwise it should be denied. Extensive experiments on impressionist style paintings demonstrate efficiency and effectiveness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

iFEM: AN INNOVATIVE FINITE ELEMENT METHOD PACKAGE IN MATLAB

Sparse matrixlization, an innovative programming style for MATLAB, is introduced and used to develop an efficient software package, iFEM, on adaptive finite element methods. In this novel coding style, the sparse matrix and its operation is used extensively in the data structure and algorithms. Our main algorithms are written in one page long with compact data structure following the style “Ten...

متن کامل

Adaptive Image Translation for Painterly Rendering

In the paper, we present a new method of converting a photo image to a synthesized painting image following the painting style of an example painting image.The proposed method uses a hierarchical and adaptive patch-based approach to both the synthesis of painting styles and preservation of scene details. This approach can be summarized as follows.The input photo image is represented as a set of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014